
CS 341: Foundations of Computer Science II

Prof. Marvin Nakayama

Homework 8 Solutions

1. Consider the problem of testing whether a DFA and a regular expression are equiv-
alent. Express this problem as a language and show that it is decidable.

Answer: Define the language as

C = {〈M, R〉 | M is a DFA and R is a regular expression with L(M) = L(R) }.

Recall that the proof of Theorem 4.5 defines a Turing machine F that decides the
language EQDFA = { 〈A, B〉 | A and B are DFAs and L(A) = L(B) }. Then
the following Turing machine T decides C:

T = “On input 〈M, R〉, where M is a DFA and R is a regular expression:

1. Convert R into a DFA DR using the algorithm in the

proof of Kleene’s Theorem.

2. Run TM F from Theorem 4.5 on input 〈M, DR〉.

3. If F accepts, accept. If F rejects, reject.”

2. Let AεCFG = { 〈G〉 | G is a CFG that generates ε }. Show that AεCFG is decid-
able.

Answer: We need to ensure that we test all derivations, but we also need the
derivations not to be infinite, or to loop forever. To do this, we first convert the
CFG G into an equivalent CFG G′ = (V,Σ, R, S) in Chomsky normal form. If
S → ε is a rule in G′, where S is the start variable, then clearly G′ generates ε,
so G also generates ε since L(G) = L(G′). Since G′ is in Chomsky normal form,
the only possible ε-rule in G′ is S → ε, so the only way we can have ε ∈ L(G′) is
if G′ includes the rule S → ε in R. Hence, if G′ does not include the rule S → ε,
then ε 6∈ L(G′). Thus, a Turing machine that decides AεCFG is as follows:

M = “On input 〈G〉, where G is a CFG:

1. Convert G into an equivalent CFG G′ = (V,Σ, R, S)

in Chomsky normal form.

2. If G′ includes the rule S → ε, accept. Otherwise, reject.”

1



3. Let Σ = {0,1}, and define

A = { 〈R〉 | R is a regular expression describing a language over Σ containing

at least one string w that has 111 as a substring

(i.e., w = x111y for some x and y) }.

Show that A is decidable.

Answer: Define the language C = {w ∈ Σ∗ | w has 111 as a substring }. Note
that C is a regular language with regular expression (0 ∪ 1)∗111(0 ∪ 1)∗ and is
recognized by the following DFA DC :

1 2 3 4

0

1

0

1

0

1

0,1

Now consider any regular expression R with alphabet Σ. If L(R)∩C 6= ∅, then R

generates a string having 111 as a substring, so 〈R〉 ∈ A. Also, if L(R)∩C = ∅,
then R does not generate any string having 111 as a substring, so 〈R〉 6∈ A. By
Kleene’s Theorem, since L(R) is described by regular expression R, L(R) must be
a regular language. Since C and L(R) are regular languages, C ∩L(R) is regular
since the class of regular languages is closed under intersection, as was shown in
an earlier homework. Thus, C ∩ L(R) has some DFA DC∩L(R). Theorem 4.4
shows that EDFA = { 〈B〉 | B is a DFA with L(B) = ∅ } is decidable, so there
is a Turing machine H that decides EDFA. We apply TM H to 〈DC∩L(R)〉 to
determine if C ∩ L(R) = ∅. Putting this all together gives us the following
Turing machine T to decide A:

T = “On input 〈R〉, where R is a regular expression:

1. Convert R into a DFA DR using the algorithm in the

proof of Kleene’s Theorem.

2. Construct a DFA DC∩L(R) for language C ∩ L(R)

from the DFAs DC and DR.

3. Run TM H that decides EDFA on input 〈DC∩L(R)〉.

4. If H accepts, reject. If H rejects, accept.”

4. Consider the emptiness problem for Turing machines:

ETM = { 〈M〉 | M is a Turing machine with L(M) = ∅ }.

Show that ETM is co-Turing-recognizable. (A language L is co-Turing-recognizable

if its complement L is Turing-recognizable.) Note that the complement of ETM is

ETM = { 〈M〉 | M is a Turing machine with L(M) 6= ∅ }.

2



(Actually, ETM also contains all 〈M〉 such that 〈M〉 is not a valid Turing-machine
encoding, but we will ignore this technicality.)

Answer: We need to show there is a Turing machine that recognizes ETM, the
complement of ETM. Let s1, s2, s3, . . . be a list of all strings in Σ∗. For a given
Turing machine M , we want to determine if any of the strings s1, s2, s3, . . . is
accepted by M . If M accepts at least one string si, then L(M) 6= ∅, so 〈M〉 ∈

ETM; if M accepts none of the strings, then L(M) = ∅, so 〈M〉 6∈ ETM. However,
we cannot just run M sequentially on the strings s1, s2, s3, . . .. For example,
suppose M accepts s2 but loops on s1. Since M accepts s2, we have that 〈M〉 ∈

ETM. But if we run M sequentially on s1, s2, s3, . . ., we never get past the first
string. The following Turing machine avoids this problem and recognizes ETM:

R = “On input 〈M〉, where M is a Turing machine:

1. Repeat the following for i = 1,2,3, . . ..

2. Run M for i steps on each input s1, s2, . . . , si.

3. If any computation accepts, accept.

5. Let A and B be two disjoint languages over a common alphabet Σ. Say that
language C separates A and B if A ⊆ C and B ⊆ C. Show that if A and B are
any two disjoint co-Turing-recognizable languages, then there exists a decidable
language C that separates A and B. (A language L is co-Turing-recognizable if

its complement L is Turing-recognizable.)

Answer: Suppose that A and B are disjoint co-Turing-recognizable languages.
We now prove that there exists a decidable language C that separates A and B.
Since A is co-Turing-recognizable, its complement A must have an enumerator E

A
.

Similarly, the fact that B is co-Turing-recognizable implies B has an enumerator
E

B
. Since A and B are disjoint, i.e., A ∩ B = ∅, we have that A ∪ B = Σ∗ by

DeMorgan’s law. Thus, every string in Σ∗ is in the union of A and B. Furthermore,
since A and B are disjoint, every string in B is in A, and every string in A is in
B.

Using these facts, we construct a Turing machine M as follows:

M = “On input w, where w ∈ Σ∗:

1. Run E
B

and E
A

in parallel.

2. Alternating between the enumerators, and starting with E
B
,

compare the outputs of each of the enumerators, one string

at a time, to the input w.

3. If some output of E
B

matches w, accept.

If some output of E
A

matches w, reject.”

3



Let C be the language recognized by TM M . Since A ∪ B = Σ∗, every string is
enumerated by E

A
or E

B
(or both). Hence, M will halt on all inputs, so M is a

decider for language C.

We now need to show that C separates A and B. Since every string in A is in
B, the output of E

B
contains all strings of A. Thus, M accepts all strings that

are output by only E
B
, so M accepts all strings of A since E

A
never outputs any

strings in A. Likewise, since every string in B is in A, the output of E
A

contains
all strings of B. But M rejects all strings that are output by only E

A
, so M

rejects all strings in B since E
B

never outputs strings from B. Thus, M accepts
all strings in A and rejects all strings in B, so its language C separates A and B.

Note that we did not prove which set C of strings M accepted. The particular
language of C depends on the order of the outputs of the enumerators. However,
the only strings in question are the strings that are in A ∩ B. Whether these
strings are in C or in C is not relevant to the question of separating A and B.

4


