CS 341: Foundations of Computer Science II
Prof. Marvin Nakayama

Homework 8 Solutions

1. Consider the problem of testing whether a DFA and a regular expression are equiv-
alent. Express this problem as a language and show that it is decidable.

Answer: Define the language as
C = {(M,R)| M is a DFA and R is a regular expression with L(M) = L(R) }.

Recall that the proof of Theorem 4.5 defines a Turing machine F' that decides the
language EQppys = { (A, B) | A and B are DFAs and L(A) = L(B) }. Then
the following Turing machine 7" decides C"

T = “Oninput (M, R), where M is a DFA and R is a regular expression:
1. Convert R into a DFA Dpg using the algorithm in the
proof of Kleene’s Theorem.
2. Run TM F from Theorem 4.5 on input (M, Dg).
3. If F accepts, accept. If F rejects, reject.”

2. Let Aecre = {(G) | G is a CFG that generates € }. Show that Aecpg is decid-
able.

Answer: We need to ensure that we test all derivations, but we also need the
derivations not to be infinite, or to loop forever. To do this, we first convert the
CFG G into an equivalent CFG G' = (V, X, R, S) in Chomsky normal form. If
S — e is arule in G', where S is the start variable, then clearly G’ generates ¢,
so G also generates € since L(G) = L(G"). Since G’ is in Chomsky normal form,
the only possible e-rule in G’ is S — €, so the only way we can have ¢ € L(G") is
if G’ includes the rule S — ¢ in R. Hence, if G’ does not include the rule S — ¢,
then € € L(G"). Thus, a Turing machine that decides Aecrg is as follows:

M = “On input (G), where G is a CFG:
1. Convert G into an equivalent CFG G' = (V, <, R, S)
in Chomsky normal form.

2. If G’ includes the rule S — &, accept. Otherwise, reject.”

3. Let X = {0, 1}, and define

A={(R) | Risa regular expression describing a language over > containing
at least one string w that has 111 as a substring

(i.e., w = x111y for some x and y) }.
Show that A is decidable.

Answer: Define the language C = {w € X* | w has 111 as a substring }. Note
that C is a regular language with regular expression (0 U 1)*111(0U 1)* and is
recognized by the following DFA D¢:

0
1
a&:@—l»
0
0

Now consider any regular expression R with alphabet . If L(R)NC #% (), then R
generates a string having 111 as a substring, so (R) € A. Also, if L(R)NC = 0,
then R does not generate any string having 111 as a substring, so (R) € A. By
Kleene’s Theorem, since L(R) is described by regular expression R, L(R) must be
a regular language. Since C' and L(R) are regular languages, C' N L(R) is regular
since the class of regular languages is closed under intersection, as was shown in
an earlier homework. Thus, C' N L(R) has some DFA Dcnp(gy. Theorem 4.4
shows that Eppa = {(B) | B is a DFA with L(B) = 0} is decidable, so there
is a Turing machine H that decides Epra. We apply TM H to (Dcnpcr)) to
determine if C N L(R) = (. Putting this all together gives us the following
Turing machine 7" to decide A:

0,1

T = “On input (R), where R is a regular expression:
1. Convert R into a DFA Dpg using the algorithm in the
proof of Kleene’s Theorem.
2. Construct a DFA Denp gy for language C' N L(R)
from the DFAs D¢ and Dp.
3. Run TM H that decides Epra on input (Denrry)-
4. If H accepts, reject. If H rejects, accept.”

4. Consider the emptiness problem for Turing machines:
Erv = { (M) | M is a Turing machine with L(M) = 0 }.

Show that Ey is co-Turing-recognizable. (A language L is co-Turing-recognizable
if its complement L is Turing-recognizable.) Note that the complement of Ery is

Erv = { (M) | M is a Turing machine with L(M) #= 0 }.

2

(Actually, Eryp also contains all (M) such that (M) is not a valid Turing-machine
encoding, but we will ignore this technicality.)

Answer: We need to show there is a Turing machine that recognizes E—TM, the
complement of Ery. Let s1,52,53,... be a list of all strings in 2*. For a given
Turing machine M, we want to determine if any of the strings si, s2,s3,... is
accepted by M. If M accepts at least one string s;, then L(M) #= 0, so (M) €
Erw; if M accepts none of the strings, then L(M) = 0, so (M) & Ery. However,
we cannot just run M sequentially on the strings si, s2,s3,.... For example,
suppose M accepts s> but loops on s1. Since M accepts so, we have that (M) €
Erm. But if we run M sequentially on s1, sa, S3, . . ., we never get past the first
string. The following Turing machine avoids this problem and recognizes Eru:

R = “Oninput (M), where M is a Turing machine:
1. Repeat the following for ¢ = 1,2,3,.. ..
2. Run M for 7 steps on each input si, s2,. .., s;.
3. If any computation accepts, accept.

. Let A and B be two disjoint languages over a common alphabet 3. Say that
language C' separates A and B if A C C and B C C. Show that if A and B are
any two disjoint co-Turing-recognizable languages, then there exists a decidable
language C' that separates A and B. (A language L is co-Turing-recognizable if
its complement L is Turing-recognizable.)

Answer: Suppose that A and B are disjoint co-Turing-recognizable languages.
We now prove that there exists a decidable language C' that separates A and B.
Since A is co-Turing-recognizable, its complement A must have an enumerator £—.

Similarly, the fact that B is co-Turing-recognizable implies B has an enumerator
E—. Since A and B are disjoint, i.e., AN B = 0, we have that AU B = X* by

DeMorgan’s law. Thus, every string in 3-* is in the union of A and B. Furthermore,
since A and B are disjoint, every string in B is in A, and every string in A is in
B.

Using these facts, we construct a Turing machine M as follows:

M = “On input w, where w € X*:
1. Run E4 and E~ in parallel.
2. Alternating between the enumerators, and starting with E,
compare the outputs of each of the enumerators, one string
at a time, to the input w.
3. If some output of E5 matches w, accept.

If some output of E— matches w, reject.”

Let C be the language recognized by TM M. Since A U B = X*, every string is
enumerated by E— or E (or both). Hence, M will halt on all inputs, so M is a
decider for language C'.

We now need to show that C' separates A and B. Since every string in A is in

B, the output of E contains all strings of A. Thus, M accepts all strings that
are output by only E=, so M accepts all strings of A since E— never outputs any

strings in A. Likewise, since every string in B is in A, the output of E~ contains
all strings of B. But M rejects all strings that are output by only E—, so M
rejects all strings in B since E& never outputs strings from B. Thus, M accepts
all strings in A and rejects all strings in B, so its language C' separates A and B.

Note that we did not prove which set C' of strings M accepted. The particular
language of C' depends on the order of the outputs of the enumerators. However,
the only strings in question are the strings that are in A N B. Whether these
strings are in C or in C' is not relevant to the question of separating A and B.

