Homework 8 Solutions

1. Consider the problem of testing whether a DFA and a regular expression are equivalent. Express this problem as a language and show that it is decidable.

Answer: Define the language as
$C=\{\langle M, R\rangle \mid M$ is a DFA and R is a regular expression with $L(M)=L(R)\}$.
Recall that the proof of Theorem 4.5 defines a Turing machine F that decides the language $E Q_{\mathrm{DFA}}=\{\langle A, B\rangle \mid A$ and B are DFAs and $L(A)=L(B)\}$. Then the following Turing machine T decides C :
$T=$ "On input $\langle M, R\rangle$, where M is a DFA and R is a regular expression:

1. Convert R into a DFA D_{R} using the algorithm in the proof of Kleene's Theorem.
2. Run TM F from Theorem 4.5 on input $\left\langle M, D_{R}\right\rangle$.
3. If F accepts, accept. If F rejects, reject."
4. Let $A \varepsilon_{\mathrm{CFG}}=\{\langle G\rangle \mid G$ is a CFG that generates $\varepsilon\}$. Show that $A \varepsilon_{\mathrm{CFG}}$ is decidable.

Answer: We need to ensure that we test all derivations, but we also need the derivations not to be infinite, or to loop forever. To do this, we first convert the CFG G into an equivalent CFG $G^{\prime}=(V, \Sigma, R, S)$ in Chomsky normal form. If $S \rightarrow \varepsilon$ is a rule in G^{\prime}, where S is the start variable, then clearly G^{\prime} generates ε, so G also generates ε since $L(G)=L\left(G^{\prime}\right)$. Since G^{\prime} is in Chomsky normal form, the only possible ε-rule in G^{\prime} is $S \rightarrow \varepsilon$, so the only way we can have $\varepsilon \in L\left(G^{\prime}\right)$ is if G^{\prime} includes the rule $S \rightarrow \varepsilon$ in R. Hence, if G^{\prime} does not include the rule $S \rightarrow \varepsilon$, then $\varepsilon \notin L\left(G^{\prime}\right)$. Thus, a Turing machine that decides $A \varepsilon_{\mathrm{CFG}}$ is as follows:

$$
M=\text { "On input }\langle G\rangle \text {, where } G \text { is a CFG: }
$$

1. Convert G into an equivalent $\mathrm{CFG} G^{\prime}=(V, \Sigma, R, S)$ in Chomsky normal form.
2. If G^{\prime} includes the rule $S \rightarrow \varepsilon$, accept. Otherwise, reject."
3. Let $\Sigma=\{0,1\}$, and define
$A=\{\langle R\rangle \quad \mid \quad R$ is a regular expression describing a language over Σ containing at least one string w that has 111 as a substring
(i.e., $w=x 111 y$ for some x and y) \}.

Show that A is decidable.
Answer: Define the language $C=\left\{w \in \Sigma^{*} \mid w\right.$ has 111 as a substring $\}$. Note that C is a regular language with regular expression $(0 \cup 1)^{*} 111(0 \cup 1)^{*}$ and is recognized by the following DFA D_{C} :

Now consider any regular expression R with alphabet Σ. If $L(R) \cap C \neq \emptyset$, then R generates a string having 111 as a substring, so $\langle R\rangle \in A$. Also, if $L(R) \cap C=\emptyset$, then R does not generate any string having 111 as a substring, so $\langle R\rangle \notin A$. By Kleene's Theorem, since $L(R)$ is described by regular expression $R, L(R)$ must be a regular language. Since C and $L(R)$ are regular languages, $C \cap L(R)$ is regular since the class of regular languages is closed under intersection, as was shown in an earlier homework. Thus, $C \cap L(R)$ has some DFA $D_{C \cap L(R)}$. Theorem 4.4 shows that $E_{\mathrm{DFA}}=\{\langle B\rangle \mid B$ is a DFA with $L(B)=\emptyset\}$ is decidable, so there is a Turing machine H that decides E_{DFA}. We apply TM H to $\left\langle D_{C \cap L(R)}\right\rangle$ to determine if $C \cap L(R)=\emptyset$. Putting this all together gives us the following Turing machine T to decide A :

$$
T=\text { "On input }\langle R\rangle, \text { where } R \text { is a regular expression: }
$$

1. Convert R into a DFA D_{R} using the algorithm in the proof of Kleene's Theorem.
2. Construct a DFA $D_{C \cap L(R)}$ for language $C \cap L(R)$ from the DFAs D_{C} and D_{R}.
3. Run TM H that decides $E_{\text {DFA }}$ on input $\left\langle D_{C \cap L(R)}\right\rangle$.
4. If H accepts, reject. If H rejects, accept."
5. Consider the emptiness problem for Turing machines:

$$
E_{\mathrm{TM}}=\{\langle M\rangle \mid M \text { is a Turing machine with } L(M)=\emptyset\}
$$

Show that E_{TM} is co-Turing-recognizable. (A language L is co-Turing-recognizable if its complement \bar{L} is Turing-recognizable.) Note that the complement of E_{TM} is

$$
\overline{E_{\mathrm{TM}}}=\{\langle M\rangle \mid M \text { is a Turing machine with } L(M) \neq \emptyset\} .
$$

(Actually, $\overline{E_{\mathrm{TM}}}$ also contains all $\langle M\rangle$ such that $\langle M\rangle$ is not a valid Turing-machine encoding, but we will ignore this technicality.)

Answer: We need to show there is a Turing machine that recognizes $\overline{E_{\mathrm{TM}}}$, the complement of E_{TM}. Let $s_{1}, s_{2}, s_{3}, \ldots$ be a list of all strings in Σ^{*}. For a given Turing machine M, we want to determine if any of the strings $s_{1}, s_{2}, s_{3}, \ldots$ is accepted by M. If M accepts at least one string s_{i}, then $L(M) \neq \emptyset$, so $\langle M\rangle \in$ $\overline{E_{\mathrm{TM}}}$; if M accepts none of the strings, then $L(M)=\emptyset$, so $\langle M\rangle \notin \overline{E_{\mathrm{TM}}}$. However, we cannot just run M sequentially on the strings $s_{1}, s_{2}, s_{3}, \ldots$. For example, suppose M accepts s_{2} but loops on s_{1}. Since M accepts s_{2}, we have that $\langle M\rangle \in$ $\overline{E_{\mathrm{TM}}}$. But if we run M sequentially on $s_{1}, s_{2}, s_{3}, \ldots$, we never get past the first string. The following Turing machine avoids this problem and recognizes $\overline{E_{\mathrm{TM}}}$:

$$
\begin{aligned}
& R=\text { "On input }\langle M\rangle \text {, where } M \text { is a Turing machine: } \\
& \text { 1. Repeat the following for } i=1,2,3, \ldots \\
& \text { 2. } \quad \text { Run } M \text { for } i \text { steps on each input } s_{1}, s_{2}, \ldots, s_{i} \text {. } \\
& \quad \text { 3. } \quad \text { If any computation accepts, accept. }
\end{aligned}
$$

5. Let A and B be two disjoint languages over a common alphabet Σ. Say that language C separates A and B if $A \subseteq C$ and $B \subseteq \bar{C}$. Show that if A and B are any two disjoint co-Turing-recognizable languages, then there exists a decidable language C that separates A and B. (A language L is co-Turing-recognizable if its complement \bar{L} is Turing-recognizable.)

Answer: Suppose that A and B are disjoint co-Turing-recognizable languages. We now prove that there exists a decidable language C that separates A and B. Since A is co-Turing-recognizable, its complement \bar{A} must have an enumerator $E_{\bar{A}}$. Similarly, the fact that B is co-Turing-recognizable implies \bar{B} has an enumerator $E_{\bar{B}}$. Since A and B are disjoint, i.e., $A \cap B=\emptyset$, we have that $\bar{A} \cup \bar{B}=\Sigma^{*}$ by DeMorgan's law. Thus, every string in Σ^{*} is in the union of \bar{A} and \bar{B}. Furthermore, since A and B are disjoint, every string in B is in \bar{A}, and every string in A is in \bar{B}.

Using these facts, we construct a Turing machine M as follows:
$M=$ "On input w, where $w \in \Sigma^{*}$:

1. Run $E_{\bar{B}}$ and $E_{\bar{A}}$ in parallel.
2. Alternating between the enumerators, and starting with $E_{\bar{B}}$, compare the outputs of each of the enumerators, one string at a time, to the input w.
3. If some output of $E_{\bar{B}}$ matches w, accept. If some output of $E_{\bar{A}}$ matches w, reject."

Let C be the language recognized by TM M. Since $\bar{A} \cup \bar{B}=\Sigma^{*}$, every string is enumerated by $E_{\bar{A}}$ or $E_{\bar{B}}$ (or both). Hence, M will halt on all inputs, so M is a decider for language C.

We now need to show that C separates A and B. Since every string in A is in \bar{B}, the output of $E_{\bar{B}}$ contains all strings of A. Thus, M accepts all strings that are output by only $E_{\bar{B}}$, so M accepts all strings of A since $E_{\bar{A}}$ never outputs any strings in A. Likewise, since every string in B is in \bar{A}, the output of $E_{\bar{A}}$ contains all strings of B. But M rejects all strings that are output by only $E_{\bar{A}}$, so M rejects all strings in B since $E_{\bar{B}}$ never outputs strings from B. Thus, M accepts all strings in A and rejects all strings in B, so its language C separates A and B.

Note that we did not prove which set C of strings M accepted. The particular language of C depends on the order of the outputs of the enumerators. However, the only strings in question are the strings that are in $\bar{A} \cap \bar{B}$. Whether these strings are in C or in \bar{C} is not relevant to the question of separating A and B.

